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Abstract. Boussinesq’s problem for the indentation of an isotropic, homogeneous elastic halfspace by a rigid circular punch
constitutes a seminal problem in the theory of contact mechanics as does Mindlin’s problem for the action of a concentrated
force at the interior of an isotropic, homogeneous elastic halfspace. The combined action of the surface indentation in the
presence of the interior loading is referred to as the Boussinesq–Mindlin problem, which has important applications in the
area of geomechanics. The Boussinesq–Mindlin problem, which represents a self-stressing loading configuration, serves as a
useful model for interpreting the mechanics of indentation of geologic media for purposes of estimating their bulk elasticity
properties. In this paper, the analysis of the problem is extended to include an exponential variation in the linear elastic
shear modulus of the halfspace region.
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1. Introduction

The problem of the indentation of an isotropic elastic halfspace by a rigid circular indenter with a
frictionless flat base is a seminal problem in contact mechanics that has applications in a variety of areas
in the engineering sciences ranging from materials engineering to the earth sciences. The solution to the
problem was obtained by Boussinesq [1] using results of potential theory, and subsequently it was solved
by Harding and Sneddon [2] using the theory of dual integral equations. Since these developments, the
area of contact mechanics has been extensively and exhaustively examined by researchers to the point
that an extensive list of articles cannot be documented within the context of a regular article. Some of the
landmark studies related to elastostatic contact mechanics in general are due to Hertz [3], Shtaerman [4],
Galin [5], Ufliand [6] and Lur’e [7], and references to studies in contact mechanics are also given by
Korenev [8], Ling [9], Goodman [10], Selvadurai [11–14], Gladwell [15], Johnson [16], Curnier [17] and
Selvadurai and Atluri [18]. The attraction of the solution rests on the fact that the load–displacement
relationship for the rigid circular indenter can be obtained in exact closed form. This provides a basis
for the estimation of deformability characteristics of the elastic material. The facility provided by the
analytical solution has unfortunately been the object of abuse in material science literature through
indiscriminate applications. For example, consider the application of micro-indentation tests advocated
in recent literature as a technique for estimating the elasticity properties of metallic and geological
materials. At the scale of such a test configuration, the indenter can interact with a polycrystalline fabric
material and could interact with either a single crystal or multiple crystals or boundaries of crystals.
The use of the classical results for indentation mechanics based on isotropic elasticity to estimate the
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deformability characteristics will lead to incorrect interpretations of the bulk elasticity properties of the
polycrystalline material.

The geomechanical properties of rocks in particular can be determined through testing of core samples
recovered from boreholes or from in situ field tests. The former approach is convenient but provides only a
point estimate of the properties, and extensive testing is necessary to develop a spatial distribution of the
properties relevant to a representative volume element of the rock mass. Field testing directly provides an
estimate of the geomechanical properties applicable to a representative volume element of the geological
medium, which can be readily used in engineering calculations. The results for indentation tests have been
successfully used in geomechanics, particularly to estimate the deformability characteristics of rock masses
when sample recovery for laboratory testing is not feasible [19–22]. In order to conduct plate loading tests
on geological media, substantially large loads need to be applied and these loads are normally provided
through reaction against a static weight [23]. In situations where the plate load tests are carried out in
tunnels or adits, the test loads can be provided through reaction against the tunnel wall [24]. Alternative
arrangements for the application of test loads include reaction piles, which require cumbersome testing
arrangements that are non-routine [25]. The Cable Jacking Test was developed by Zienkiewicz and Stagg
[26] in an attempt to minimize the complex test load application methods associated with the previous
test arrangements. The method involves the installation of a rock anchor remote from the test plate.
The axis of the test plate can be aligned in the orientation of the anchor to provide an axisymmetric
anchoring load. The implicit assumption in the Cable Jacking Test is that the anchor should be located
remote from test plate in order to minimize the influence of the reaction load on the displacements of
the tests plate. This aspect, however, was not examined in detail in the study by Zienkiewicz and Stagg
[26]. A theoretical estimate of the influence of a concentrated anchor load (Fig. 1) on the deflection of the
test plate was first provided by Selvadurai [27]. It was shown that the concentrated anchor load should
be located at a depth of at least ten diameters of the test plate in order to minimize its influence on
the test plate deflection by 5 %. The analysis of the Cable Jacking Test has been extended to include
distributed anchor loads [28], flexibility of the test plate [29,30], transverse isotropy of the rock mass [31]
and creep effects of the rock mass [32]. The mathematical analysis of the Cable Jacking Test developed
by Selvadurai [27] makes use of integral equation techniques for the analysis of contact problems as do
the highlighted volumes on contact mechanics cited previously (and elegantly summarized in the article
by Sneddon [33]) and employs Mindlin’s solution for the axisymmetric problem related to the action of
a concentrated axial force within a halfspace region void of surface tractions. It has been shown [34–39]
that results related to interaction between indenters, inclusions and externally placed localized loads can
also be obtained quite conveniently by making use of Betti’s reciprocal theorem.
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Fig. 1. Schematic view of the “Cable Jacking Test”
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In this paper, we examine the problem of the Cable Jacking Test related to an isotropic non-
homogeneous elastic halfspace region where the linear elastic shear modulus varies exponentially with
depth. The class of contact problems related to non-homogeneous elastic media has been examined
quite extensively in the literature, and comprehensive accounts of developments in this area are given in
[11,14,15]. The axisymmetric contact problems related to the indentation of an elastic halfspace region
where the linear elastic shear modulus has an exponential variation in the axial direction were examined
by Korenev [8], Mossakovskii [40], Kassir and Chuapresert [41] and Muravskii [42]. The studies by Gib-
son [43], Awojobi and Gibson [44] and Rajapakse and Selvadurai [45] examine problems where the linear
elastic shear modulus of an incompressible elastic material varies linearly with depth. The exponential
and linear variations implemented in these studies lead to unbounded values of the shear modulus as
the axial coordinate z → ∞. To overcome this limitation, Selvadurai et al. [46] proposed an exponential
variation of the linear elastic shear modulus that has a bounded variation within the halfspace region
and examined the Reissner–Sagoci problem, which involves the axisymmetric torsional indentation of a
halfspace region by a rigid circular disc. Other indentation problems involving bounded variations in the
linear elastic shear modulus are given in [47–50]. The exponential variation in the linear elastic shear
modulus of an incompressible elastic halfspace has recently been used to examine boundary value prob-
lems related to surface loading, internal loading and adhesive indentation by a rigid circular punch. In
this paper, we examine the Cable Jacking Problem related to the interaction of an indenting rigid circular
punch with a smooth base and an internally placed concentrated Mindlin force (Fig. 1). The resulting
integral equation, however, cannot be solved with conventional analytical procedures that have been used
to examine contact problems. In the current study, a discretization procedure [11,14,15,51–54] is used
to develop an approximate solution. The results obtained using this technique are compared with results
developed using a computational approach.

2. Governing equations

We restrict attention to axisymmetric problems in the theory of linear elasticity, referred to the cylindrical
polar coordinate system (r, θ, z);the displacement vector is defined by

u = {ur(r, z), 0, uz(r, z)} (1)

and the strain tensor ε is defined by

ε =

⎛
⎝

∂ur

∂r 0 1
2

(
∂ur

∂z + ∂uz

∂r

)
0 ur

r 0
1
2

(
∂ur

∂z + ∂uz

∂r

)
0 ∂uz

∂z

⎞
⎠ (2)

The corresponding nonzero components of the Cauchy stress tensor σ are

σ =

⎛
⎝

σrr 0 σrz

0 σθθ 0
σrz 0 σzz

⎞
⎠ (3)

Considering the type of elastic non-homogeneity, which is restricted to a depth-dependent variation of
shear modulus G(z) and a constant Poisson’s ratio ν, Hooke’s law can be written as:

σ = 2G(z)[αeI + ε] (4)

where I is the unit matrix and

e = tr(ε); α =
ν

(1 − 2ν)
(5)
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In the absence of body forces, the axial symmetric forms of the equations of equilibrium reduce to
∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r
= 0 (6)

∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
= 0 (7)

These can be expressed in terms of the displacements as follows:

∇2ur + (1 + 2α)
∂e

∂r
− ur

r2
+ g(z)

(
∂uz

∂r
+

∂ur

∂z

)
= 0 (8)

∇2uz + (1 + 2α)
∂e

∂z
+ 2g(z)

(
αe +

∂uz

∂z

)
= 0 (9)

where ∇2 is the axisymmetric form of Laplace’s operator given by

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
(10)

with
g(z) =

1
G

∂G

∂z
(11)

Attention is restricted to inhomogeneous elastic materials where the linear elastic shear modulus varies
as

G(r, z) = G0e
λz; r ∈ (0,∞); z ∈ (0,∞) (12)

and
ν(r, z) = ν = Constant; r ∈ (0,∞); z ∈ (0,∞) (13)

where G0 is the shear modulus at the surface of the halfspace and the non-dimensional parameter λ ≥ 0
characterizes the depth-dependent variation. We also introduce a non-dimensional parameter λ̄ = λ/a,
where a is a length parameter associated with the problem (e.g. the radius of the rigid indenter). The
positive definiteness of the parameter λ is necessary to ensure that the shear modulus does not reduce to
zero as z → ∞.

The methods of solution of the equations governing problems in non-homogeneous elastic media are
many and varied, and accounts of developments in this area are summarized by Selvadurai [11,14],
Gladwell [15] and Aleynikov [54]. A particularly effective method for the solution of the exponential non-
homogeneity problem applicable to a compressible elastic solid was proposed by Ter-Mkrtich’ian [55],
which involves the introduction of an auxiliary function κ(r, z) that is used to express the radial displace-
ment as

ur(r, z) =
∂κ

∂r
(14)

Using this substitution in (8) and (9) and eliminating the axial displacement uz(r, z), we obtain the
following equation for the function κ(r, z); i.e.

∇2∇2κ − α∇2κ + 2λ
∂

∂z
∇2κ + β

∂2κ

∂z2
= 0 (15)

where ∇2 is the axisymmetric form of Laplace’s operator given by

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
(16)

and

α =
λ2ν

1 − ν
, β =

λ2

1 − ν
(17)

We note that an identical formulation of the exponential inhomogeneity has been presented in the lit-
erature [56], but unfortunately, without a proper acknowledgement of the original contribution of Ter-
Mkrtich’ian [55].
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In the case of a homogeneous elastic material λ ≡ 0, and (15) reduces to the biharmonic equation for
κ(r, z); this function can be identified as Love’s strain potential [57,58]. Following [55], the solution of
(15) applicable to a halfspace region can be written as

κ(r, z) =
∫ ∞

0

e−tz[F1(t) cos pz + F2(t) sin pz]J0(qr)dt (18)

where F1(t) and F2(t) are arbitrary functions and the parameters p and q can be defined as

q = (2t + λ)

√
t(t + λ)

α + (2t + λ)2
, p =

√
αt(t + λ)

α + (2t + λ)2
(19)

By substituting Eq. (13) into Eq. (10) and using the equilibrium equations, both components of the
displacement vector can be expressed as (z ≥ 0)

ur(r, z) = −
∞∫

0

e−tzq[F1(t) cos pz+F2(t) sin pz]J1(qr)dt (20)

and

uz(r, z) =

∞∫

0

e−tz[ψ1(t) cos pz+ψ2(t) sin pz]J0(qr)dt (21)

where

ψ1(t) =
1

p2 + η2
[ηφ1(r, t) + pφ2(r, t)] (22)

ψ2(t) =
1

p2 + η2
[ηφ2(r, t) + pφ1(r, t)] (23)

φ1(r, t) =
[
q2F1(t) − (1 − 2ν)

√
αqF2(t)

]
J0(qr) (24)

φ2(r, t) =
[
q2F2(t) − (1 − 2ν)

√
αqF1(t)

]
J0(qr) (25)

and
η = t + λ(1 − 2ν) (26)

This formally completes the formulation of the equations governing the elastostatic boundary value
problem related to the compressible elastic medium with an exponential variation in the linear elastic
shear modulus.

3. The normal indentation of the non-homogeneous elastic halfspace

The focus of the paper is on the analysis of the axisymmetric indentation of the non-homogeneous elastic
halfspace by a smooth rigid indenter of radius a. The problem can be formulated as an integral equation
governing the unknown normal contact stress distribution q(r, θ) complemented by the equation of equi-
librium for the indenter. Unlike in the case of the indentation of a homogeneous elastic medium, where
the solution can be found in exact closed form, in the case of the indentation of a non-homogeneous elastic
halfspace, the integral equation cannot be solved in a convenient way. The solution to the axisymmetric
normal loading over a circular region of the non-homogeneous elastic halfspace with zero shear tractions
was presented by Ter-Mkrtich’ian [55]. This solution can also be used to develop, as a limiting case, the
equivalent Boussinesq solution for the halfspace. Alternative developments are presented in [56]. Consider
the problem of the loading of the non-homogeneous elastic halfspace by a concentrated normal load P .
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The analytical solution for the axial surface displacement resulting from the action of the concentrated
force can be obtained in the form [56]

uz(r) =
P

4πG0
F (r) (27)

where

F (r) =
∫ ∞

0

q
χ1

χ2
J0(qr)dq (28)

in which

χ1 = 2(1 − ν)(γ1 + λ/2)q2 − (1 − ν)(1 − 2ν)λq2 + (1 − 2ν)νλ
[
(γ1 + λ/2)2 + γ2

2

]

χ2 = ν(1 − ν)
[
(γ1 + λ/2)2 + γ2

2

]2
+ {(1 − ν)2

[
3(γ1 + λ/2)2 − γ2

2

]

+(2 − ν)ν
[
(γ1 + λ/2)2 + γ2

2

] − 2(1 − ν)λ(γ1 + λ/2)}q2 − (1 − ν)(2 − ν)q4

γ2
1 =

1
8

[√
(λ2 + 4q2)2 + (4λϑq)2 +

(
λ2 + 4q2

)]

γ2
2 =

1
2

[√
(λ2 + 4q2)2 + (4λϑq)2 − (

λ2 + 4q2
)]

ϑ2 =
ν

1 − ν
(29)

The distribution of contact normal stress at the smooth interface at an arbitrary point located within
the contact zone is denoted by σ(r, θ). Integrating the result for the concentrated normal force (27) over
the contact region, we obtain the following integral equation for determining the contact stress σ(r, θ):

uz(r, θ) =
1

4πG0

∫ 2π

0

∫ a

0

σ(ρ, ϕ)F (R)ρdρdϕ = Δ = const. (30)

where
R =

[
r2 + ρ2 − 2rρ cos(θ − ϕ)

]1/2
(31)

The contact stresses should also satisfy the equation of equilibrium for the indenter: i.e.
∫ 2π

0

∫ a

0

σ(r, θ)rdrdθ + P = 0 (32)

where P is the external load applied to the indenter. The result (30) can be further reduced by imposing
conditions of axial symmetry, although the resulting equations cannot be solved in a convenient way using
techniques developed for the solution of integral equations [59,60]. The approach adopted in this paper is
to use an approximate technique where the contact stress distribution is represented as a discrete set of
uniform annular contact stress regions. This approach has been extensively applied to examine contact
problems involving indenters and halfspace regions [52,53,61] and has recently been applied to examine
bonded contact problems for a non-homogeneous elastic halfspace and a rigid circular indenter [62].

4. A discretization approach for the analysis of the contact problem

A fundamental result that is needed to perform a discretization analysis of the contact problem relates
to the uniform normal loading of the non-homogeneous elastic halfspace by a normal loading of intensity
p0 and radius a.

The boundary conditions pertaining to this problem are as follows:

σzz(r, 0) =
{

p0; 0 ≤ r < a
0; a < r < ∞ (33)

σrz(r, 0) = 0; 0 ≤ r < ∞ (34)
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The functions F1(t) and F2(t) introduced in the expressions (20) and (21) can be determined from the
above boundary conditions.

In addition to these boundary conditions, it is assumed that the displacements and stresses should
satisfy the appropriate regularity conditions in the half space region as (r, z) → ∞. Consistent with the
regularity condition at infinity, the function F1(t) and F2(t) can be obtained as follows

F1(t) =
(1 − 2ν)

2G

p0
q

J1(q)
Q(t)

S(t) − P (t)T (t)
(35)

F1(t) = P (t)F1(t) (36)

Q(t) = 2

√
t(t + λ)

α + (2t + λ)2
+

(2t + λ)2(α + λ2)
2
√

(t2 + λt) [α + (2t + λ2)]3
(37)

P (t) =
q2η + qp

√
α(1 − 2ν) + t

(
η2 + p2

)
q2p − q

√
αη(1 − 2ν) + p (η2 + p2)

(38)

S(t) =
1

η2 + p2
[−νq2

(
η2 + p2

)
+ (1 − ν)tq2η + (1 − ν)(1 − 2ν)tpq

√
α

+ (1 − ν)q2p2 + (1 − ν)(1 − 2ν)qp
√

αη
]

(39)

T (t) =
1

η2 + p2
[
2q2pt(1 − ν) − qt

√
αη(1 − ν)(1 − 2ν) + (1 − ν)(1 − 2ν)q2pλ

− (1 − ν)(1 − 2ν)qp2
√

α
]

(40)

First we consider the indentation of a non-homogeneous compressible elastic halfspace by a rigid circular
indenter of radius a with smooth contact subjected to an axial load P . We assume that the contact
stresses at the smooth/frictionless interface are compressive, and there is no separation at the contact
region (i.e. smooth bilateral contact). The method of solution assumes that the contact region of the
indenter can be discretized into annular regions of equal area and that the contact stress within each
annular area is uniform (Fig. 2).

Considering the annular regions of uniform normal stress intensity σ1, σ2, . . . , σn acting within the
annular region of internal radii 0, r1, r2, . . . , rn−1 and external radii r1, r2, . . . , rn, respectively, the surface
displacement w1, w2, w3, . . . , wn at the mid-radii position of the annular regions due to normal surface
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Fig. 2. Representation of the normal contact stress distribution as equi-areal annular regions of uniform stress
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tractions can be obtained by superposition of the solutions obtained using (21). The compatibility between
the displacements of the non-homogenous compressible elastic halfspace and settlement of the indenter,
Δ, is then established at the mid-point location of each annular region. The physical domain of interest
is taken to be a non-homogeneous compressible elastic halfspace in which the shear modulus has an
exponential variation over the entire depth of the halfspace (12).

In order to assign equal annular areas, the dimensions of ri take the following forms:

ri =
(

i

n

) 1
2

a; i = 1, 2, 3, . . . , n (41)

Similarly for the mid-locations of the annular regions,

rm1 = 0, rmi =
(

ri−1 + ri

2

)
; i = 2, 3, . . . , n (42)

We further assume that the uniform normal stress elements σi can be represented as multiples of the
average contact stress p0 exerted by the rigid indenter; i.e.

σi = σ̃ip0 where i = 1, 2, 3, . . . , n (43)

where
p0 =

P

πa2
(44)

Using the above developments, it is possible to express the surface displacements wi due to normal contact
stresses σ̃i in the form of the matrix relation

{w} =
p0a

G0
[C]{σ̃} (45)

where {w} and {σ̃} are column vectors and the coefficients of the square matrix [C] are as follows:

[C] =

⎡
⎢⎢⎢⎢⎢⎣

w11 w12 w13 . . . w1j

w21 w22 w23 . . . w2j

w31 w32 w33 . . . w3j

...
...

...
. . .

...
wi1 wi2 wi2 . . . wij

⎤
⎥⎥⎥⎥⎥⎦

(46)

where wij is the surface displacement at the ith annulus mid-point location due to all the normal contact
stresses σj .

We shall now focus attention on the rigid indenter problem. For compatibility at the soil–indenter
interface, wi will have the same value as the rigid displacement of the indenter Δ; this constitutes an
additional unknown of the problem. The remaining equation required for the solution of Eq. (45) is
furnished by the equilibrium equation for the entire indenter, i.e.

n∑
i=1

σ̃i = n (47)

The matrix formed by combining Eqs. (45) and (47) can be inverted to determine the non-dimensional
contact stresses σ̃i and the non-dimensional indenter displacement

Δ∗ =
G0Δ

p0a
(48)

In this paper, the rigid indenter is discretized into 15 equal annular areas (i.e. n = 15). The accuracy
of solution depends on the number of annular regions. However, the number of annular regions cannot
be increased indefinitely; such a procedure usually results in an ill-conditioned set of equations. These
difficulties stem from the singular behaviour of the contact stress at the indenter boundary (see e.g.
[11,62])
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5. Interaction of the rigid test plate and the Mindlin force

As indicated previously, the action of the concentrated Mindlin force PM, shown in Fig. 1, will induce
an additional displacement of the rigid test plate. The induced rigid displacement at the indenter can be
incorporated into the calculations shown in Sect. 4. This, however, entails developing a solution to the
problem of a Mindlin force that acts at a point at the interior of the halfspace region with an exponential
non-homogeneity in the linear elastic modulus. This analysis is not trivial and requires the study of the
interaction between a non-homogeneous elastic layer and a non-homogeneous elastic halfspace region
with exponential variations in the non-homogeneity in the shear modulus. This problem was solved by
Selvadurai and Katebi [63] for the case of an incompressible elastic halfspace with an exponential variation
in the shear modulus. (Also, in the case of the isotropic homogeneous problem, Mindlin’s solution for
the surface displacement of the halfspace can be obtained in a relatively simple form.) We assume that,
due to the combined action of the indentation load P and the internal Mindlin force, the contact stresses
remain compressive, and there is no loss of contact at the unilateral interface. For the application of
Betti’s reciprocal theorem, we directly make use of the discretized equi-areal annular uniform region
representation of the contact normal stress determined in Sect. 4 and evaluate the axial displacement
ΔP

M at the point of application of the Mindlin force PM due to the contact stresses σi induced by P . The
uniform displacement (unknown) of the rigid test plate due to the Mindlin load applied at the interior of
the non-homogeneous elastic halfspace is denoted by ΔPM

P . By applying the Betti reciprocal theorem, we
have:

ΔP
PM

PM = ΔPM
P P (49)

Therefore, the net displacement Δ̃ (vertical displacement at z = 0, r = 0 due to the combined action of
the forces P and PM) can be written as:

Δ̃ = Δ − PM

P
ΔP

PM
(50)

where Δ is defined by Eq. (48).

6. Numerical results

The procedure outlined in first section leads to explicit infinite integral expressions for the displacement
and stress fields within the non-homogeneous elastic half-space under a circular load (Eqs. 20, 21). The
integrands of these integrals cannot be expressed in explicit forms. Consequently, results of interest for
practical applications can only be developed through a numerical integration of the infinite integrals.
Due to the oscillatory and singular nature of these integrands, an adaptive numerical procedure is used
to enhance the accuracy of the numerical results; examples of such an application are given by Katebi
et al. [64] and Katebi and Selvadurai [65]. For numerical evaluation of the integrals, the upper limit of
integration is replaced by a finite value ξ0; this limit is increased until a convergent result is obtained.

Figure 3 shows the normalized displacement of a contact problem (without the internal Mindlin Force)
over the classic Boussinesq [1] results for different λ̃ (which is indicative of the depth-dependent variation
in the shear modulus) and different Poisson’s ratio. As expected, the displacement decreases as the shear
modulus of elasticity increases. The influence of Poisson’s ratio is strong, and it increases as the rigidity
of the medium increases.

Figures 4, 5 and 6 show the relative displacement of the rigid disc indenter due to the combined action
of the external force P and Mindlin force PM for different locations of the Mindlin force. The results
show the influence of the non-homogeneity parameter (λ̃) on the relative displacement of the rigid disc
for different values of Poisson’s ratio (ν). It can be seen from the figures that the effect of the internal
Mindlin force decreases as the depth of the loading increases. It is also evident that the presence of an
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Fig. 3. Ratio of displacement of the rigid disc on a non-homogeneous medium (numerical discretized solution) to homoge-

neous medium [1] for different λ̃; comparison between different Poisson’s ratio

Fig. 4. Relative displacement of the rigid circular indenter due to the combined action of the external force P and Mindlin
force PM(PM = P ) for different locations of the Mindlin force, examining the effect of shear modulus for the case where
ν = 0.0

elastic non-homogeneity condition has a significant effect on the relative displacement of the rigid disc
indenter.

Figure 7 shows the relative displacement of the rigid disc indenter due to the combined action of the
external force P and Mindlin force PM for different locations of the Mindlin force. The results show the
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Fig. 5. Relative displacement of the rigid circular indenter due to the combined action of the external force P and Mindlin
force PM(PM = P ) for different locations of the Mindlin force, examining the effect of shear modulus for the case where
ν = 0.3

Fig. 6. Relative displacement of the rigid circular indenter due to the combined action of the external force P and Mindlin
force PM(PM = P ) for different locations of the Mindlin force, examining the effect of shear modulus for the case where

ν = 0.5

influence of the Poisson’s ratio parameter (ν) on the relative displacement of the rigid disc for shear
modulus parameter (λ̄ = 0.1). It can be seen from the figure that an increase in Poisson’s ratio has a
significant effect on the relative displacement of the rigid disc.
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Fig. 7. Relative displacement of the rigid circular indenter due to the combined action of the external force P and Mindlin
force PM(PM = P ) for different locations of the Mindlin force, examining the effect of Poisson’s ratio for the case where
λ̄ = 0.1

7. Concluding remarks

The present work provides the solutions for the case of a Cable Jacking Test related to an isotropic
non-homogeneous elastic halfspace region where the linear elastic shear modulus varies exponentially
with distance normal to the indented surface. The resulting integral equations, however, cannot be solved
using the conventional analytical procedures that have been used to examine contact problems. In this
paper, a discretization procedure [11,53,61,62] is used to develop an approximate solution. The results
developed using this technique are presented to examine the effect of the Poisson’s ratio, variation of
shear modulus with depth and the depth of location of the internal Mindlin-type point load. It should be
noted that the basic objective of the Cable Jacking Test is to interpret the geomechanical properties of
the tested rock mass through an interpretation of the load-displacement relationship for the test plate.
Even for the situation where the tests are carried out on homogeneous geologic media, the test stiffness
provides only information on the combination of the elasticity parameters as identified by the linear elastic
shear modulus and Poisson’s ratio. In the case of an inhomogeneous geological formation, the specific
depth variation of the elastic inhomogeneity can only be assessed through additional test data involving
depth-dependent plate load tests. The results for Cable Jacking Tests conducted on plates located on the
surface of a rock mass provides estimates for the bulk deformability parameters that takes into account
the influence of both the depth-dependent elastic inhomogeneity and Poisson’s ratio.
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